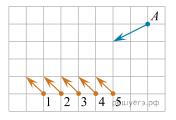
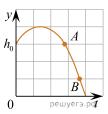

Централизованное тестирование по физике, 2020

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

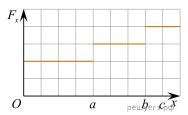

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график зависимости координаты x тела, движущегося вдоль оси Ox, от времени t. Тело находилось в движении только в течение промежутка(-ов) времени:



2. На рисунке точками обозначены положения частиц и стрелками показаны скорости их движения в некоторый момент времени. Если все частицы движутся равномерно и прямолинейно, то с частицей *A* столкнётся частица, обозначенная цифрой:

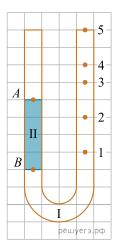
Примечание. Повторные столкновения частиц не рассматривать.



- 1) 1 2) 2 3) 3 4) 4 5) 5
- **3.** На рисунке представлен график зависимости координаты y тела, брошенного вертикально вверх с высоты h_0 , от времени t. Укажите правильное соотношение для модулей скоростей тела в точках A и B.

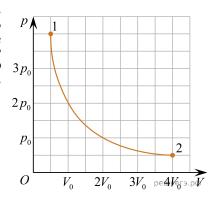
1)
$$v_B = 9v_A$$
 2) $v_B = 3\sqrt{3}v_A$ 3) $v_B = 3v_A$ 4) $v_B = \sqrt{3}v_A$ 5) $v_B = \sqrt{2}v_A$

4. Тело двигалось вдоль оси Ox под действием силы \vec{F} . График зависимости проекции силы F_x на ось Ox от координаты x тела представлен на рисунке. На участках (O; a), (a; b), (b; c) сила совершила работу A_{0a} , A_{ab} , A_{bc} соответственно. Для этих работ справедливо соотношение:


1)
$$A_{0a} < A_{ab} < A_{bc}$$
 2) $A_{0a} < A_{bc} < A_{ab}$ 3) $A_{0a} = A_{bc} < A_{ab}$

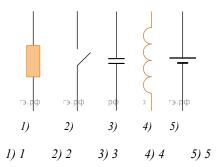
4)
$$A_{0a} = A_{ab} < A_{bc}$$
 5) $A_{bc} < A_{ab} < A_{0a}$

- 5. Два тела массами m_1 и $m_2 = 3m_1$ двигались по гладкой горизонтальной м плоскости со скоростями, модули которых $v_1=3,0\frac{\mathrm{M}}{\mathrm{c}}$ и $v_2=1,0\frac{\mathrm{M}}{\mathrm{c}}$. Если после столкновения тела продолжили движение как единое целое, то модуль максимально возможной скорости v тел непосредственно после столкновения равен:

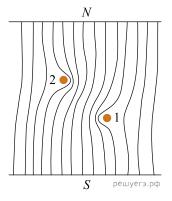

 - 1) $1.5\frac{M}{C}$ 2) $2.0\frac{M}{C}$ 3) $3.0\frac{M}{C}$ 4) $3.5\frac{M}{C}$

- 6. В левое колено U-образной трубки с жидкостью I долили не смешивающуюся с ней жидкость II, плотность которой $ho_{II}=rac{3}{4}
 ho_{I}$ (см. рис.). Если в состоянии равновесия точка А находится на границе жидкость II - воздух, а точка <math>B - на границе жидкость I жидкость II, то на границе жидкость I — воздух находится точка под номером:

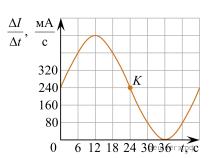
- 1) 1 2) 2
- 3) 3
- 5) 5
- 7. В Международной системе единиц (СИ) удельная теплоёмкость вещества измеряется в:
 - 1) Дж


- 2) $\frac{\mathcal{J}_{\mathcal{K}}}{\mathcal{K}}$ 3) $\frac{\mathcal{J}_{\mathcal{K}}}{\mathcal{K}_{\Gamma}}$ 4) $\frac{\mathcal{J}_{\mathcal{K}}}{\mathcal{K}_{\Gamma} \cdot \mathcal{K}}$ 5) \mathcal{K}
- 8. Если давление идеального газа p=2,0 к Πa , а средняя кинетическая энергия поступательного движения молекул газа $<\!E_{\rm K}\!>\ =\ 1.5\cdot 10^{-20}\,{\rm Дж}$, то концентрация п молекул газа равна:
 - 1) $1,0 \cdot 10^{23} \text{ m}^{-3}$ 2) $1,5 \cdot 10^{23} \text{ m}^{-3}$ 3) $2,0 \cdot 10^{23} \text{ m}^{-3}$ 4) $1,5 \cdot 10^{23} \text{ m}^{-3}$ 5) $3,0 \cdot 10^{23} \text{ m}^{-3}$
- 9. На рисунке показан график зависимости давления р одноатомного идеального газа от его объёма V. При переходе из состояния 1 в состояние 2 газ совершил работу, равную A=9кДж. Количество теплоты Q, полученное газом при этом переходе, равно:

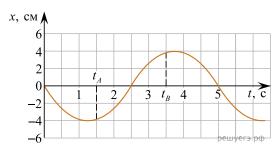
- 1) 1 кДж
- 2) 4 кДж
- 3) 5 кДж
- 4) 7 кДж
- 5) 9 кДж
- 10. Сосуд, плотно закрытый подвижным поршнем, заполнен воздухом с относительной влажностью $\varphi_1 = 30\%$. Если при изотермическом сжатии объём воздуха в сосуде уменьшится в три раза, то относительная влажность ф2 воздуха будет равна:
 - 1) 100%


- 2) 90% 3) 30% 4) 15%
- 5) 10%

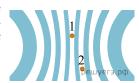
11. На рисунке представлены условные обозначения элементов электрической цепи. Обозначение конденсатора отмечено цифрой:


- 12. Плоский воздушный конденсатор зарядили и отключили от источника питания. Чтобы энергию электростатического поля конденсатора уменьшить в 3 раза, расстояние между обкладками необходимо:
 - 1) увеличить в 3 раза
- 2) увеличить в 9 раз
- 3) уменьшить в 3 раза
- 4) уменьшить в 9 раз 5) не изменять
- 13. Сопротивление стальной $\left(\rho = 8 \frac{\Gamma}{\mathrm{CM}^3} \right)$ проволоки длиной l = 200 м равно R=4 Ом. Если удельное сопротивление стали $ho_{yд}=2\cdot 10^{-7}~{
 m O}_{
 m M}\cdot {
 m M},$ то масса т проволоки равна:
 - 1) 2 кг

- 2) 4 кг 3) 8 кг 4) 12 кг
- 5) 16 кг
- 14. Между полюсами N и S постоянного магнита находятся два тонких прямых длинных проводника 1 и 2, перпендикулярных плоскости рисунка. Сечения проводников показаны как точки. На рисунке схематически изображены линии индукции магнитного поля, созданного проводниками и магнитом. Направление линий не указано. Токи в проводниках направлены:


- $1)\ 1-\kappa$ нам, 2- от нас $2)\ 1-$ от нас, 2- от на $3)\ 1-\kappa$ нам, $2-\kappa$ нам $4)\ 1-$ от нас, $2-\kappa$ нам
 - 2) 1 om нас, 2 om нас

- 5) 1 к нам, 2 ток в проводнике отсутствует
- 15. На рисунке изображён график зависимости скорости изменения силы тока $\frac{\Delta I}{\Delta t}$ в катушке от времени t. Eсли индуктивность катушки L = 30 ${\it м} {\it \Gamma}{\it H}$, то в момент времени $t = 24 \ c$ модуль ЭДС самоиндукции в катушке равен:


- 1) 6,0 mB 2) 7,2 mB 3) 14 mB
- 4) 18 мВ
- 5) 24 мВ

16. Математический маятник совершает гармонические колебания. На рисунке представлен график зависимости координаты х маятника от времени t. Изменение фазы колебаний маятника в течение интервала времени $[t_A; t_B]$

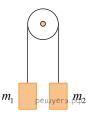
- $l) \frac{\pi}{5}$ рад
- $2)\frac{\pi}{4}$ рад
- 3) $\frac{2\pi}{5}$ рад
- 4) $\frac{4\pi}{5}$ рад

17. На экране, расположенном на одинаковом расстоянии от двух точечных источников когерентных световых волн, получена интерференционная картина (см. рис.). Если разность фаз волн в точке І равна нулю, то в точке 2 разность фаз волн равна:

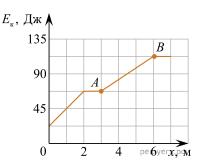
- 1) 0 2) π 3) 2π 4) 3π
- 5) 4π

18. Энергия атома водорода в основном состоянии $E_1 = -13,60$ эВ, а энергия атома водорода в возбуждённом состоянии $E_2 = -0.85$ $_2$ В. Если атом перейдёт из основного состояния в возбуждённое, то энергия атома изменится на ΔE , равное:

19. Почва считается загрязнённой кадмием, если в одном килограмме почвы содержится больше чем $N_0 = 5.4 \cdot 10^{18}$ атомов кадмия. В одном аккумуляторе типа AA находится $N_1 = 3.2 \cdot 10^{22}$ атомов кадмия. Если весь кадмий из аккумулятора попадёт в почву, то максимальная масса т загрязнённой почвы будет равна:

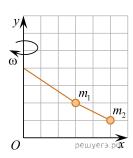

- 1) 0,17 m 2) 0,59 m 3) 5,9 m 4) 17 m 5) 59 m

20. Если при захвате ядром изотопа лития ${}_{3}^{6}Li$ некоторой частицы образуются ядра изотопа гелия ${}^{4}_{2}$ Heu изотопа водород ${}^{3}_{1}$ H, то захваченной частицей является:


- 1) протон
- он 3) α-частица 5) нейтрон 2) электрон
- 4) позитрон

21. Турист ожидал свой багаж в аэропорту, стоя у начала равномерно движущейся багажной ленты. Спустя время t = 2 c c после появления багажа в начале ленты турист заметил свой багаж и начал догонять его, двигаясь равномерно со скоростью, модуль которой $\upsilon_{\mathrm{T}}=1\frac{\mathrm{M}}{\mathrm{c}}$. Если турист догнал багаж, пройдя вдоль ленты расстояние L=8 м, то модуль скорости $\upsilon_{\scriptscriptstyle{\mathcal{I}}}$ ленты был pавен ... $\frac{\mathcal{A}^{M}}{c}$.

22. Два небольших груза массами $m_1 = 0.17$ кг и т2 = 0,29 кг подвешены на концах невесомой нерастяжимой нити, перекинутой через неподвижный гладкий цилиндр. В начальный момент времени оба груза удерживали на одном уровне в состоянии покоя (см. рис.). Через промежуток времени $\Delta t = 0,60$ с после того как их отпустили, модуль перемещения $|\Delta \vec{r}|$ грузов друг относительно друга стал равен ... см.



23. На рисунке приведён график зависимости кинетической энергии E_{κ} тела, движущегося вдоль оси Ох, от координаты х. На участке АВ модуль результирующей сил, приложенных к телу, равен ... Н.

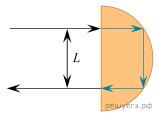
24. Вокруг вертикальной оси Оу с постоянной угловой скоростью ω вращаются два небольших груза, подвешенных на лёгкой нерастяжимой нити. Верхний конец нити прикреплён к оси (см. рис.). Если масса первого груза $m_1 = 90$ г, то масса первого груза т 2 равна ... г.

Примечание. Масштаб сетки вдоль обеих осей одина-

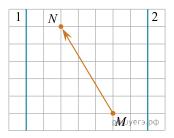

25. Если идеальный газ, количество вещества которого постоянно, изохорно охладили от температуры $t_1 = 117 \, ^{\circ}\text{C}$ до температуры $t_2 = 39 \, ^{\circ}\text{C}$, то модуль

относительного изменения давления газа $\left| \frac{\Delta p}{p_1} \right|$ равен... %.

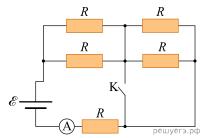
26. Внутри электрочайника, электрическая мощность = 700 Вт, а теплоёмкость пренебрежимо мала, находится горячая вода $\left(c=4200rac{ extstyle extstyle$ чайнике вода нагрелась от температуры $t_1 = 88,0~^{\circ}C$ до температуры $t_2 = 92.0~^{\circ}C$ за время $\tau_1 = 40~^{\circ}c$. Если затем электрочайник отключить от сети, то вода в нём охладится до начальной температуры t_1 за время τ_2 , равное


Примечание. Мощность тепловых потерь электрочайника считать постоянной.

27. С идеальным одноатомным газом, количество вещества которого постоянно, провели циклический процесс $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$, p - V-диаграмма которого изображена на рисунке. Если $p_0 = 58 \, \mathrm{к}\Pi a, \, V_0 = 13 \, \mathrm{дm}^3$, то количество теплоты Q, полученное газом при нагревании, равно ... кДж.


28. Узкий параллельный пучок света падает по нормали на плоскую поверхность прозрачного полуцилиндра радиусом

 $R = 3\sqrt{3}$ см выходит из неё параллельно падаюшему пучку света (см. рис.). Если от момента входа в полуцилиндр до момента выхода из него потери энергии пучка не происходит, то минимальное расстояние L между падающим и выходящим пучками света равно...см.



Примечание. Полуцилиндр — это тело, образованное рассечением цилиндра плоскостью, в которой лежит его ось симметрии.

29. На рисунке изображён участок плоского конденсатора с обкладками 1 и 2, которые перпендикулярны плоскости рисунка. Если при перемещении точечного положительного заряда q=14 нКл из точки M в точку N электрическое поле конденсатора совершило работу A=390 нДж, то разность потенциалов $\phi_1-\phi_2$ между обкладками равна ... B.

30. В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если до замыкания ключа K идеальный амперметр показывает силу тока $I_1=18$ мA, то после замыкания ключа K амперметр показывал силу тока I_2 равную ... мA.

31. Квадратная рамка изготовлена из тонкой однородной проволоки. Сопротивление рамки, измеренное между точками A и B (см. рис.), $R_{AB}=0,50$ Ом. Если рамку поместить в магнитное поле, то при равномерном изменении магнитного потока от $\Phi_1=176$ мВб до $\Phi_2=80$ мВб через поверхность, ограниченную рамкой, за время $\Delta t=500$ мС сила тока I в рамке будет равна ... мA.

32. Радар, установленный на самолёте, излучил вперёд по движению в сторону неподвижного аэростата два коротких электромагнитных импульса, следующих друг за другом через промежуток времени $\tau=20~\rm Mc.$. Эти импульсы отразились от аэростата и были приняты радаром. Если модуль скорости, с которой самолёт приближается к аэростату, $\upsilon=210\frac{\rm M}{\rm c}$, то промежуток времени между моментами излучения и приёма первого импульса больше, чем промежуток времени между моментами излучения и приёма второго импульса, на величину Δt , равную ... нс.